INPUT | OUTPUT | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
There are several ways to represent 3D rotations for computer graphics and other applications. Four of the most common are: Euler angles; quaternions; axis-angle; and rotation matrices. This tool converts Tait-Bryan Euler angles into each of the other three representations. It also rotates the input point by the specified amount. It works for all possible rotations, including the null rotation and gimbal lock (when pitch equals +90° or −90°). All angles are in degrees.
The following conventions are observed:
See this paper for a detailed explanation of Euler angles and rotation matrices.
See the main paper for a detailed explanation of quaternions, and the math used by this tool to perform the conversions.
Comments and error reports may be sent to the following address. We may post comments of general interest. Be sure to identify the page you are commenting on.
.